RYERSON UNIVERSITY

DEPARTMENT OF MATHEMATICS

MTH 210 MIDTERM - WINTER 2005

NAME:

STUDENT ID:

SECTION:

Section	Lab	TA	Section	Lab	TA
1	Thursdays at 1	Anca	2	Thursdays at 4	Chris
3	Thursdays at 5	Chris	4	Fridays at 9	Anca

INSTRUCTIONS

This exam has 5 pages including this front page. It consists of 3 questions and is worth 25% of the course mark. Please answer all questions directly on this exam.

This is a closed book exam. One $8.5^{\prime \prime}$ by 11 " double-sided crib sheet is allowed, but no other aids are.

This exam is 2 hours long.
If you need more room for the solutions, please continue on the back of the page and indicate CLEARLY that you have done so.

Question A - Recursion and Induction 20

Question B - Number Theory 20

Question C - Graph Theory 20

Question A - Recursion and Induction - 20 Marks

Given the sequence a_{n} defined with the recurrence relation:

$$
\mathrm{a}_{0}=1
$$

$\mathrm{a}_{\mathrm{n}}=\mathrm{k}\left(\mathrm{a}_{\mathrm{n}-1}\right)^{2}$ for $\mathrm{n} \geq 1$

Terms of a Sequence (5 marks)

Calculate $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}$
Keep your intermediate answers as you will need them in the next question.

Iteration (3 marks)

Using iteration, solve the recurrence relation when $n \geq 1$ (i.e. find an explicit formula for a_{n}).
Simplify your answer as much as possible. Your final solution can contain the symbols Π and \sum.

Proof by induction (12 marks)
Show that $2 \mid n^{2}-n$ for all positive integers n by weak induction. No other method is acceptable.

Question B - Number Theory - 20 marks

Euclidian Algorithm (5 marks)
Use the Euclidian Algorithm to find gcd $(598,1287)$. Show all your steps.

Mod Proof (15 marks)
Prove that for any integers A, B, a, d such that $d \neq 0$,
if $A \bmod d=a$ and $B \bmod d=1$ then $A B \bmod d=a$

Question C - Graph Theory - 20 marks

Graph Degrees (12 marks)
For each of the following questions, either draw a graph with the requested properties, or explain convincingly (possibly by quoting a theorem) why such a graph cannot be drawn.
a) A graph with 5 vertices of degrees 5, 5, 4, 4, 3
c) A simple graph with 5 vertices of degrees 5,5 , 4, 4, 4
b) A graph with 5 vertices of degrees 5, 5, 4, 4, 4
d) A simple graph with at least 5 vertices which have degrees 5, 5, 4, 4, 4. The other vertices have whichever degree seem appropriate.

Circuits (8 marks)

Find the requested circuits in the following graphs or explain why they don't exist, supporting your explanation with a theorem. Give the circuits that you can find as a sequence of vertices and edges, for example: $\mathrm{v}_{1} \mathrm{e}_{2} \mathrm{~V}_{2} \mathrm{e}_{3} \mathrm{~V}_{1}$

a) Find an Euler circuit in G that starts at v_{1}
b) Find a Hamiltonian circuit in G that starts at v_{1}

v2

e3

